- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Abbasi, Ahmed Ali (2)
-
Vaswani, Namrata (2)
-
Moothedath, Shana (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we develop and analyze a novel Gradient Descent (GD) based solution, called Alternating GD and Minimization (AltGDmin), for efficiently solving the low rank matrix completion (LRMC) in a federated setting. Here “efficient” refers to communication-, computation- and sample- efficiency. LRMC involves recovering an n × q rank-r matrix X⋆ from a subset of its entries when r ≪ min(n, q). Our theoretical bounds on the sample complexity and iteration complexity of AltGDmin imply that it is the most communication-efficient solution while also been one of the most computation- and sample- efficient ones. We also extend our guarantee to the noisy LRMC setting. In addition, we show how our lemmas can be used to provide an improved sample complexity guarantee for the Alternating Minimization (AltMin) algorithm for LRMC. AltMin is one of the fastest centralized solutions for LRMC; with AltGDmin having comparable time cost even for the centralized setting.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abbasi, Ahmed Ali; Moothedath, Shana; Vaswani, Namrata (, IEEE)
An official website of the United States government
